Statistique pour Mathématiciens - Introduction

1 Probability Space and Probability measures

- A set $\Omega \neq \emptyset$
 - $\omega \in \Omega$: elementary events
 - subsets $F \subseteq \Omega$: events
 - $\mathcal{F} \subseteq \mathcal{P}(\Omega)$: sample space
- A probability measure is a function $\mathbb{P}: \mathcal{F} \to [0,1]$ such that
 - (i) $\mathbb{P}(\Omega) = 1$,
 - (ii) For every disjoint collection of events $(F_n)_{n\geq 1}$ in \mathcal{F}

$$\mathbb{P}\left(\bigcup_{n>1} F_n\right) = \sum_n \mathbb{P}(F_n).$$

• $\Omega = \{\omega_1, \dots, \omega_n\}$ finite space, $G = \{\omega_{i_1}, \dots, \omega_{i_k}\} \in \mathcal{P}(\Omega)$ event,

$$\mathbb{P}(G) = \sum_{j:\omega_j \in G} \mathbb{P}(\{\omega_j\}).$$

1.1 Conditional Probability, Independence

- Let $G, H \in \mathcal{F}$ with $\mathbb{P}(H) > 0$
 - Conditional probability $\mathbb{P}(G|H) = \frac{\mathbb{P}(G \cap H)}{\mathbb{P}(H)}$
- Let $G, H_1, H_2, \ldots \in \mathcal{G}, H_1, H_2, \ldots$ disjoint, $\mathbb{P}(H_i) > 0, \cup_i H_i = \Omega$,
 - law of total probability: $\mathbb{P}(G) = \sum_{i=1}^{\infty} \mathbb{P}(G|H_i)\mathbb{P}(H_i)$

- Bayes theorem: $\mathbb{P}(H_j|G) = \mathbb{P}(H_j \cap G)/\mathbb{P}(G) = \frac{\mathbb{P}(G|H_j)\mathbb{P}(H_j)}{\sum_{i=1}^{\infty}\mathbb{P}(G|H_i)\mathbb{P}(H_i)}$
- The events $G_1, G_2, \dots \in \mathcal{G}$ are *independent* iff for any finite sub-collection G_{i_1}, \dots, G_{i_k} :

$$\mathbb{P}(G_{i_1} \cap \cdots \cap G_{i_k}) = \mathbb{P}(G_{i_1}) \times \mathbb{P}(G_{i_2}) \times \ldots \times \mathbb{P}(G_{i_k})$$

2 Random Variables

• A random variable is a function $X:\Omega\to\mathbb{R}$ such that $\forall x\in\mathbb{R}$

$$\{\omega \in \Omega : X(\omega) \le x\} \in \mathcal{F}.$$

• The distribution function of a random variable X is $F: \mathbb{R} \to \mathbb{R}$ defined as

$$F(x) = \mathbb{P}(X \le x).$$

- Properties of the distribution function:
 - (i) $x \le y \implies F(x) \le F(y)$
 - (ii) $\lim_{x\to\infty} F(x) = 1$, $\lim_{x\to-\infty} F(x) = 0$
 - (iii) $\lim_{y\downarrow x,y\neq x} F(y) = F(x)$, that is, F is right-continuous.
- Consider the set $D_F = \{x \in \mathbb{R} : F(x) F(x^-) > 0\}$
 - If $\mathbb{P}(\{X \in D_F\}) = 1$ then X is a discrete random variable.
 - If $D_F = \emptyset$ then X is a *continuous* random variable.
 - Note that r.v. could be neither continuous or discrete (mixed r.v., ...).

2.1 Density

• Discrete case:

The density function of a discrete r.v. X is $f: \mathbb{R} \to \mathbb{R}$ defined via

$$f(x) = \mathbb{P}(X = x).$$

-
$$\mathbb{P}_X(G) = \mathbb{P}(X \in G) = \sum_{j: x_j \in G} f(x_j)$$

- $F(x) = \sum_{j: x_j \le x} f(x_j)$
- $F_X(x)$ piecewise constant with possible jumps at x_1, x_2, \ldots
- $f_X(x) = \mathbb{P}(X = x) \ \forall x$
- $f_X(x) \le 1 \ \forall x$

• Continuous case:

The distribution function F of a continuous random variable admits density function if there exists $f: \mathbb{R} \to \mathbb{R}_+$ such that

$$F(b) - F(a) = \int_a^b f(x) dx.$$

- $\mathbb{P}(G) = P(X \in G) = \int_G f(x) dx$
- $F(x) = \int_{-\infty}^{x} f(x) dx$
- F(x) continuous
- $f(x) = \frac{d}{dx}F(x)$
- $f(x) \neq \mathbb{P}(X = x) = 0 !!!$
- Can be f(x) > 1 for some x. In fact, f can be unbounded!

3 Random Vectors

- Equivalent definitions of a random vector $\mathbf{X} = (X_1, \dots, X_d)^T$
 - a vector of random variables defined on the same space Ω
 - a random variable with values in \mathbb{R}^d .
- Joint distribution function:

$$F_{\mathbf{X}}(x_1, \dots, x_d) = \mathbb{P}(X_1 < x_1, \dots, X_d < x_d).$$

- Joint density:
 - discrete:

$$f_{\mathbf{X}}(x_1,\ldots,x_d) = \mathbb{P}(X_1 = x_1,\ldots,X_d = x_d)$$

- continuous:

$$F_{\mathbf{X}}(x_1, \dots, x_d) = \int_{-\infty}^{x_1} \dots \int_{-\infty}^{x_d} f_{\mathbf{X}}(u_1, \dots, u_d) du_1 \dots du_d$$
$$f_{\mathbf{X}}(x_1, \dots, x_d) = \frac{\partial^d}{\partial x_1 \dots \partial x_d} F_{\mathbf{X}}(x_1, \dots, x_d)$$

3.1 Marginal Distributions

- $f_{X_i}: \mathbb{R} \to \mathbb{R}_+$ defined via
 - Discrete case:

$$f_{X_i}(x_i) = \mathbb{P}(X_i = x_i) = \sum_{x_1} \cdots \sum_{x_{i-1}} \sum_{x_{i+1}} \cdots \sum_{x_d} f(x_1, \dots, x_{i-1}, x_i, x_{i+1}, \dots, x_d)$$

- Continuous case:

$$f_{X_i}(x_i) = \int_{-\infty}^{\infty} \dots \int_{-\infty}^{\infty} f(y_1, \dots, y_{i-1}, x_i, y_{i+1}, \dots, y_d) dy_1 \dots dy_{i-1} dy_{i+1} dy_d.$$

• Marginals DO NOT determine the joint distribution

3.2 Independence

• X_1, \ldots, X_n (discrete or continuous) are independent iff \forall collection of intervals $G_1 \subset \mathbb{R}, \ldots, G_n \subset \mathbb{R}$,

$$\mathbb{P}\{X_1 \in G_1, \dots, X_n \in G_n\} = \prod_i \mathbb{P}\{X_i \in G_i\}.$$

- X_1, \dots, X_d are independent iff for all $x_1, \dots, x_d \in \mathbb{R}$

$$F_{(X_1,...,X_d)}(x_1,...,x_d) = F_{X_1}(x_1) \times ... \times F_{X_d}(x_d)$$

- (if densities exist) X_1, \ldots, X_d are independent iff

$$f_{(X_1,...,X_d)}(x_1,...,x_d) = f_{X_1}(x_1) \times ... \times f_{X_d}(x_d)$$

4 Expectation, Variance, Covariance

- Expectation:
 - For continuous variables:

$$\mathbb{E}[X] = \int_{\mathbb{R}} x f(x) dx.$$

- For discrete variables:

$$\mathbb{E}[X] = \sum_{j} x_j f(x_j) = \sum_{j} x_j \mathbb{P}(X = x_j).$$

- Linearity: $\mathbb{E}[X_1 + \alpha X_2] = \mathbb{E}[X_1] + \alpha \mathbb{E}[X_2]$.
- $\mathbb{E}[h(x)] = \sum_{j} h(x_{j}) \mathbb{P}(X = x_{j})$ (discrete) or

 $\mathbb{E}[h(x)] = \int_{\mathbb{R}} h(x) f(x) dx$ (continuous).

• Variance

$$\operatorname{Var}(X) = \mathbb{E}\left[(X - \mathbb{E}(X))^2\right] \qquad \text{(if } \mathbb{E}[X^2] < \infty)$$

• Covariance between X_1 and X_2

$$\operatorname{Cov}(X_1, X_2) = \mathbb{E}\left[(X_1 - \mathbb{E}(X_1))(X_2 - \mathbb{E}(X_2)) \right] \quad \text{(if } \mathbb{E}[X_i^2] < \infty).$$

• Correlation between X_1 and X_2

$$Corr(X_1, X_2) = \frac{Cov(X_1, X_2)}{\sqrt{Var(X_1)Var(X_2)}} \in [-1, 1].$$

Expresses the degrees of linear dependency.

- Useful formulae:
 - $\operatorname{Var}(X) = \mathbb{E}[X^2] (\mathbb{E}[X])^2 = \operatorname{Cov}(X, X)$
 - $Var(aX + b) = a^2Var(X)$
 - $\operatorname{Var}(\sum_{i} X_{i}) = \sum_{i} \operatorname{Var}(X_{i}) + \sum_{i \neq j} \operatorname{Cov}(X_{i}, X_{j})$
 - $Cov(X_1, X_2) = \mathbb{E}[X_1 X_2] \mathbb{E}[X_1] \mathbb{E}[X_2]$

-
$$Cov(aX_1 + bX_2, Y) = aCov(X_1, Y) + bCov(X_2, Y)$$

- if $\mathbb{E}[X_1^2] + \mathbb{E}[X_2^2] < \infty$, then the following are equivalent:
 - $\mathbb{E}[X_1X_2] = \mathbb{E}[X_1]\mathbb{E}[X_2]$
 - $Cov(X_1, X_2) = 0$
 - $Var(X_1 \pm X_2) = Var(X_1) + Var(X_2)$

Independence implies this, but the converse does not hold!

5 Moments

- The moment of order k of a random variable X is $\mathbb{E}[X^k]$ (if $\mathbb{E}[|X^k|] < \infty$).
- Moment generating function: $M_X : \mathbb{R} \to \mathbb{R} \cup \{\infty\}$ defined by

$$M_X(t) = \mathbb{E}[e^{tX}].$$

- If $M_X(t)$ exists and is finite for |t| < b for some b > 0 then $\mathbb{E}[X^k] = M_X^{(k)}(0)$
- The moment generating function identifies the distribution, i.e. $M_X(t) = M_Y(t) < \infty$ around a neighbourhood of $0 \implies \mathbb{P}_X = \mathbb{P}_Y$
- If X and Y are independent then $M_{X+Y}(y) = M_X(y)M_Y(y)$.