Overview of Stochastic Convergence

Motivation: Functions of Random Variables

1. Let $X_1, ..., X_n$ be i.i.d. with $\mathbb{E}X_i = \mu$ and $\text{var}[X_i] = \sigma^2$. Consider:

 $$\bar{X}_n = \frac{1}{n} \sum_{i=1}^{n} X_i$$

 - If $X_i \sim \mathcal{N}(\mu, \sigma^2)$ or $X_i \sim \exp(1/\mu)$ then know $\text{dist}[\bar{X}_n]$.
 - But X_i may be from some more general distribution
 - Joint distribution of X_i may not even be completely understood

 Would like to be able to say something about \bar{X}_n even in those cases!

 Perhaps this is not easy for fixed n, but what about letting $n \to \infty$?

 \(\Rightarrow\) (a very common approach in mathematics)

2. Stochastic Convergence
 - How does a R.V. “Converge”?
 - Convergence in Probability and in Distribution

3. Useful Theorems
 - Weak Convergence of Random Vectors

4. Stronger Notions of Convergence

5. The Two “Big” Theorems

Statistical Theory (Week 2) Stochastic Convergence

Once we assume that $n \to \infty$ we start understanding $\text{dist}[\bar{X}_n]$ more:

- At a crude level \bar{X}_n becomes concentrated around μ

\[\mathbb{P}[|\bar{X}_n - \mu| < \epsilon] \approx 1, \quad \forall \epsilon > 0, \text{ as } n \to \infty \]

- Perhaps more informative is to look at the “magnified difference”

\[\mathbb{P}[\sqrt{n}(\bar{X}_n - \mu) \leq x] \overset{n \to \infty}{\approx} ? \quad \text{could yield } \mathbb{P}[\bar{X}_n \leq x] \]

More generally \(\Rightarrow\) Want to understand distribution of $Y = g(X_1, ..., X_n)$ for some general g:

- Often intractable
- Resort to asymptotic approximations to understand behaviour of Y

Warning: While lots known about asymptotics, often they are misused (n small!)
Convergence of Random Variables

Need to make precise what we mean by:
- Y_n is “concentrated” around μ as $n \to \infty$
- More generally what “Y_n behaves like Y” for large n means
- $\text{dist}[g(X_1, \ldots, X_n)] \overset{n \to \infty}{\approx} ?$

↔ Need appropriate notions of convergence for random variables

Recall: random variables are functions between measurable spaces

\implies Convergence of random variables can be defined in various ways:
- Convergence in probability (convergence in measure)
- Convergence in distribution (weak convergence)
- Convergence with probability 1 (almost sure convergence)
- Convergence in L^p (convergence in the p-th moment)

Each of these is qualitatively different - Some notions stronger than others

Convergence in Probability

Definition (Convergence in Probability)

Let $\{X_n\}_{n \geq 1}$ and X be random variables defined on the same probability space. We say that X_n converges in probability to X as $n \to \infty$ (and write $X_n \overset{p}{\to} X$) if for any $\epsilon > 0$,

$$\mathbb{P}[|X_n - X| > \epsilon] \overset{n \to \infty}{\to} 0.$$ Intuitively, if $X_n \overset{p}{\to} X$, then with high probability $X_n \approx X$ for large n.

Example

Let $X_1, \ldots, X_n \overset{iid}{\sim} \mathcal{U}[0, 1]$, and define $M_n = \max\{X_1, \ldots, X_n\}$. Then,

$$F_{M_n}(x) = x^n \implies \mathbb{P}[|M_n - 1| > \epsilon] = \mathbb{P}[M_n < 1 - \epsilon] = (1 - \epsilon)^n \overset{n \to \infty}{\to} 0$$

for any $0 < \epsilon < 1$. Hence $M_n \overset{p}{\to} 1$.

Some Comments on “$\overset{p}{\to}$” and “$\overset{d}{\to}$”

- Convergence in probability implies convergence in distribution.
- Convergence in distribution does NOT imply convergence in probability
 ⇐ Consider $X \overset{d}{\sim} \mathcal{N}(0, 1), -X + \frac{1}{n} \overset{d}{\to} X$ but $-X + \frac{1}{n} \overset{p}{\to} -X$.
- “$\overset{d}{\to}$” relates distribution functions
 ⇐ Can use to approximate distributions (approximation error?).
- Both notions of convergence are metrizable
 ⇐ i.e. there exist metrics on the space of random variables and distribution functions that are compatible with the notion of convergence.
 ⇐ Hence can use things such as the triangle inequality etc.
- “$\overset{d}{\to}$” is also known as “weak convergence” (will see why).

Equivalent Def: $X \overset{d}{\to} X \iff \mathbb{E}f(X_n) \to \mathbb{E}f(X)$ for all measurable f.

Convergence in Distribution

Definition (Convergence in Distribution)

Let $\{X_n\}_{n \geq 1}$ and X be random variables (not necessarily defined on the same probability space). We say that X_n converges in distribution to X as $n \to \infty$ (and write $X_n \overset{d}{\to} X$) if for any continuous and bounded f

$$\mathbb{E}f(X_n) \to \mathbb{E}f(X) \quad \forall \text{cts and bounded } f$$

Statistical Theory (Week 2) Stochastic Convergence 5 / 21

Statistical Theory (Week 2) Stochastic Convergence 6 / 21

Statistical Theory (Week 2) Stochastic Convergence 7 / 21

Statistical Theory (Week 2) Stochastic Convergence 8 / 21
Theorem

(a) \(X_n \xrightarrow{p} X \implies X_n \xrightarrow{d} X \)

(b) \(X_n \xrightarrow{d} c \implies X_n \xrightarrow{p} c, c \in \mathbb{R} \).

Proof

Let \(x \) be a continuity point of \(F_X \) and \(\epsilon > 0 \). Then,

\[
P[X_n \leq x] = P[X_n \leq x, |X_n - X| \leq \epsilon] + P[X_n \leq x, |X_n - X| > \epsilon]
\]

\[
\leq P[X \leq x + \epsilon] + P[|X_n - X| > \epsilon]
\]

since \(\{X \leq x + \epsilon\} \) contains \(\{X_n \leq x, |X_n - X| \leq \epsilon\} \). Similarly,

\[
P[X \leq x - \epsilon] = P[X \leq x - \epsilon, |X_n - X| \leq \epsilon] + P[X \leq x - \epsilon, |X_n - X| > \epsilon]
\]

\[
\leq P[X_n \leq x] + P[|X_n - X| > \epsilon]
\]

which yields \(P[|X_n - X| > \epsilon] \)

\[
\leq P[X \leq x - \epsilon, |X_n - X| \leq \epsilon] + P[|X_n - X| > \epsilon]
\]

Combining the two inequalities and “sandwiching” yields the result.

(b) Let \(F \) be the distribution function of a constant \(c \). Then

\[
F(x) = P[c \leq x] = \begin{cases} 1 & \text{if } x \geq c, \\ 0 & \text{if } x < c. \end{cases}
\]

Exercise

Prove part (a). You may assume without proof the Subsequence Lemma: \(X_n \xrightarrow{p} X \) if and only if every subsequence \(X_{nm} \) of \(X_n \) has a further subsequence \(X_{nm(k)} \) such that \(P[|X_{nm(k)} - X| \to 0] = 1 \).

Theorem (Slutsky’s Theorem)

Let \(X_n \xrightarrow{d} X \) and \(Y_n \xrightarrow{d} c \in \mathbb{R} \). Then

(a) \(X_n + Y_n \xrightarrow{d} X + c \)

(b) \(X_n Y_n \xrightarrow{d} cX \)

Proof of Slutsky’s Theorem.

(a) We may assume \(c = 0 \). Let \(x \) be a continuity point of \(F_X \). We have

\[
P[X_n + Y_n \leq x] = P[X_n + Y_n \leq x, |Y_n| \leq \epsilon] + P[X_n + Y_n \leq x, |Y_n| > \epsilon]
\]

\[
\leq P[X_n \leq x + \epsilon] + P[|Y_n| > \epsilon]
\]

Similarly,

\[
P[X_n \leq x - \epsilon] \leq P[X_n + Y_n \leq x] + P[|Y_n| > \epsilon]
\]

Therefore,

\[
P[X_n \leq x - \epsilon] - P[|Y_n| > \epsilon] \leq P[X_n + Y_n \leq x] \leq P[X_n \leq x + \epsilon] + P[|Y_n| > \epsilon]
\]

Taking \(n \to \infty \), and then \(\epsilon \to 0 \) proves (a).

(b) By (a) we may assume that \(c = 0 \) (check). Let \(\epsilon, M > 0 \):

\[
P[|X_n Y_n| > \epsilon] \leq P[|X_n Y_n| > \epsilon, |Y_n| \leq 1/M] + P[|Y_n| \geq 1/M]
\]

\[
\leq P[|X_n| > \epsilon M] + P[|Y_n| \geq 1/M]
\]

\[
\to P[|X| > \epsilon M] + 0
\]

The first term can be made arbitrarily small by letting \(M \to \infty \).
Theorem (General Version of Slutsky’s Theorem)

Let \(g : \mathbb{R} \times \mathbb{R} \to \mathbb{R} \) be continuous and suppose that \(X_n \xrightarrow{d} X \) and \(Y_n \xrightarrow{d} c \in \mathbb{R} \). Then, \(g(X_n, Y_n) \to g(X, c) \) as \(n \to \infty \).

\[\text{\footnotesize Notice that the general version of Slutsky’s theorem does not follow immediately from the continuous mapping theorem.} \]

- The continuous mapping theorem would be applicable if \((X_n, Y_n) \) weakly converged jointly (i.e. their joint distribution) to \((X, c) \).
- But here we assume only marginal convergence (i.e. \(X_n \xrightarrow{d} X \) and \(Y_n \xrightarrow{d} c \) separately, but their joint behaviour is unspecified).
- The key of the proof is that in the special case where \(Y_n \xrightarrow{d} c \) where \(c \) is a constant, then marginal convergence \(\iff \) joint convergence.
- However if \(X_n \xrightarrow{d} X \) where \(X \) is non-degenerate, and \(Y_n \xrightarrow{d} Y \) where \(Y \) is non-degenerate, then the theorem fails.
- Notice that even the special cases (addition and multiplication) of Slutsky’s theorem fail of both \(X \) and \(Y \) are non-degenerate.

Exercise: Give a counterexample to show that neither of \(X_n \xrightarrow{p} X \) or \(X_n \xrightarrow{d} X \) ensures that \(\mathbb{E}X_n \to \mathbb{E}X \) as \(n \to \infty \).

Theorem (Convergence of Expectations)

If \(|X_n| < M < \infty \) and \(X_n \xrightarrow{d} X \), then \(\mathbb{E}X \) exists and \(\mathbb{E}X_n \xrightarrow{a.s.} \mathbb{E}X \).

Proof.

Assume first that \(X_n \) are non-negative \(\forall n \). Then,

\[
|\mathbb{E}X_n - \mathbb{E}X| = \left| \int_0^M \mathbb{P}[X_n > x] - \mathbb{P}[X > x] \, dx \right| \\
\leq \int_0^M |\mathbb{P}[X_n > x] - \mathbb{P}[X > x]| \, dx \xrightarrow{n \to \infty} 0.
\]

since \(M < \infty \) and the integration domain is bounded.

Exercise: Generalise the proof to arbitrary random variables.

Remarks on Weak Convergence

- Often difficult to establish weak convergence directly (from definition)
- Indeed, if \(F_n \) known, establishing weak convergence is “useless”
- Need other more “handy” sufficient conditions

Scheffé’s Theorem

Let \(X_n \) have density functions (or probability functions) \(f_n \), and let \(X \) have density function (or probability function) \(f \). Then

\[f_n \xrightarrow{n \to \infty} f \text{ (a.e.)} \iff X_n \xrightarrow{d} X \]

- The converse to Scheffé’s theorem is NOT true (why?).

Continuity Theorem

Let \(X_n \) and \(X \) have characteristic functions \(\varphi_n(t) = \mathbb{E}[e^{itX_n}] \), and \(\varphi(t) = \mathbb{E}[e^{itX}] \), respectively. Then,

(a) \(X_n \xrightarrow{d} X \iff \varphi_n \to \varphi \text{ pointwise} \)
(b) If \(\varphi_n(t) \) converges pointwise to some limit function \(\psi(t) \) that is continuous at zero, then:

(i) \(\exists \) a measure \(\nu \) with c.f. \(\psi \)
(ii) \(F_{X_n} \xrightarrow{w} \nu \).

Proof.

Taylor expanding around \(\theta \) gives:

\[g(X_n) = g(\theta_n^*) + g'(\theta_n^*)(X_n - \theta_n^*) \]

Thus \(\theta_n^* \to \theta \). By the continuous mapping theorem \(g'(\theta_n^*) \xrightarrow{p} g'(\theta) \).

Thus \(a_n(g(X_n) - g(\theta)) = a_n(g(\theta_n^*) + g'(\theta_n^*)(X_n - \theta_n^*) - g(\theta)) = g'(\theta_n^*)a_n(X - \theta) \xrightarrow{d} g'(\theta)Z \).

The delta method actually applies even when \(g'(\theta) \) is not continuous (proof uses Skorokhod representation).
Stochastic Convergence

Almost Sure Convergence and Convergence in L^p

There are also two stronger convergence concepts (that do not compare)

Definition (Almost Sure Convergence)

Let $(X_n)_{n \geq 1}$ and X be random variables defined on the same probability space $(\Omega, \mathcal{F}, \mathbb{P})$. Let $A := \{\omega \in \Omega : X_n(\omega) \xrightarrow{n \to \infty} X(\omega)\}$. We say that X_n converges almost surely to X as $n \to \infty$ (and write $X_n \overset{a.s.}{\to} X$ if $\mathbb{P}[A] = 1$.

More plainly, we say $X_n \overset{a.s.}{\to} X$ if $\mathbb{P}[X_n \to X] = 1$.

Definition (Convergence in L^p)

Let $(X_n)_{n \geq 1}$ and X be random variables defined on the same probability space. We say that X_n converges to X in L^p as $n \to \infty$ (and write $X_n \xrightarrow{L^p} X$) if

$$\mathbb{E}|X_n - X|^p \xrightarrow{n \to \infty} 0.$$

Note that $||X||_{L^p} := (\mathbb{E}|X|^p)^{1/p}$ defines a complete norm (when finite).

Recalling two basic Theorems

Multivariate Random Variables \to “d“ defined coordinatewise

Theorem (Strong Law of Large Numbers)

Let $(X_n)_{n \geq 1}$ be pairwise iid random variables with $\mathbb{E}X_k = \mu$ and $\mathbb{E}|X_k| < \infty$, for all $k \geq 1$. Then,

$$\frac{1}{n} \sum_{k=1}^{n} X_k \overset{a.s.}{\to} \mu.$$

- “Strong” is as opposed to the “weak” law which requires $\mathbb{E}X_k^2 < \infty$ instead of $\mathbb{E}|X_k| < \infty$ and gives “p” instead of “$a.s.$”

Theorem (Central Limit Theorem)

Let (X_n) be an iid sequence of random vectors in \mathbb{R}^d with mean μ and covariance Σ and define $\bar{X}_n := \sum_{m=1}^{n} X_m/n$. Then,

$$\sqrt{n}\Sigma^{-\frac{1}{2}}(\bar{X} - \mu) \overset{d}{\to} Z \sim \mathcal{N}_d(0, I_d).$$

Relationship Between Different Types of Convergence

- $X_n \overset{a.s.}{\to} X \implies X_n \overset{p}{\to} X \implies X_n \overset{d}{\to} X$
- $X_n \overset{L^p}{\to} X$, for $p > 0 \implies X_n \overset{p}{\to} X \implies X_n \overset{d}{\to} X$
- for $p \geq q$, $X_n \overset{L^p}{\to} X \implies X_n \overset{L^q}{\to} X$
- There is no implicative relationship between “$a.s.$” and “L^p”

Definition

Let (X_n) be a sequence of random vectors of \mathbb{R}^d, and X a random vector of \mathbb{R}^d with $X_n = (X_n^{(1)}, \ldots, X_n^{(d)})^T$ and $X = (X^{(1)}, \ldots, X^{(d)})^T$. Define the distribution functions $F_{X_n}(x) = \mathbb{P}[X_n^{(1)} \leq x^{(1)}, \ldots, X_n^{(d)} \leq x^{(d)}]$ and $F_X(x) = \mathbb{P}[X^{(1)} \leq x^{(1)}, \ldots, X^{(d)} \leq x^{(d)}]$, for $x = (x^{(1)}, \ldots, x^{(d)})^T \in \mathbb{R}^d$. We say that X_n converges in distribution to X as $n \to \infty$ (and write $X_n \xrightarrow{d} X$) if for every continuity point of F_X we have

$$F_{X_n}(x) \xrightarrow{n \to \infty} F_X(x).$$

There is a link between univariate and multivariate weak convergence:

Theorem (Cramér-Wold Device)

Let (X_n) be a sequence of random vectors of \mathbb{R}^d, and X a random vector of \mathbb{R}^d. Then, $X_n \overset{d}{\to} X \iff \theta^T X_n \overset{d}{\to} \theta^T X$, $\forall \theta \in \mathbb{R}^d$.

Exercise

Prove part (b) of the continuous mapping theorem.

Weak Convergence of Random Vectors
Convergence Rates

Often convergence not enough → How fast?
↪→ [quality of approximation]

- Law of Large Numbers: assuming finite variance, L^2 rate of $n^{-1/2}$
- What about Central Limit Theorem?

Theorem (Berry-Essen)

Let $X_1, ..., X_n$ be iid random vectors taking values in \mathbb{R}^d and such that $\mathbb{E}[X_i] = 0$, $\text{cov}[X_i] = I_d$. Define,

$$S_n = \frac{1}{\sqrt{n}}(X_1 + ... + X_n).$$

If A denotes the class of convex subsets of \mathbb{R}^d, then for $Z \sim \mathcal{N}_d(0, I_d)$,

$$\sup_{A \in A} |\mathbb{P}[S_n \in A] - \mathbb{P}[Z \in A]| \leq C d^{1/4} \frac{\mathbb{E}\|X_i\|^3}{\sqrt{n}}.$$